Site icon IB Psychology

Hypotheses

Hypotheses can be tricky. I hope this blog can help make them a bit easier.

Updated June 2020

Writing good hypotheses in IB Psychology IAs is something many students find challenging. After moderating another 175+ IA’s this year I could see some common errors students were making. This post hopes to give a clear explanation with examples to help with this tricky task. 

Null and Alternative Hypotheses

Null Hypothesis (H0)

Our teacher support pack has everything students and teachers need to get top marks in the IA. Download a Free preview from https://store.themantic-education.com/

The term “null” means having no value, significance or effect. It also refers to something associated with zero. A null hypothesis in a student’s IA, therefore, should state that there is (or will be) no effect of the IV on the DV. This is what we assume to be true until we have the evidence to suggest otherwise.

A common misconception is that the hypothesis is based on the sample in the study. Our hypotheses should actually be about the population from which we’ve drawn the sample, not the sample itself. Therefore, when writing our hypotheses we can use present tense instead of future tense (e.g. There is instead of There will be…).

Having said that, in the IB Psych’ IA, the IB is apparently assuming the hypotheses are based on the sample (because variables need to be operationalized) so writing your hypotheses as predictions of what might happen in the experiment is fine (see below for examples).

IB Psych IA Tip: It’s fine (and even recommended) to state in your null hypotheses that there will be no significant difference between the two conditions in your experiment or any differences are due to chance (see footnote 1)

The Alternative Hypothesis (H1)

This is also referred to as the research hypothesis or the experimental hypothesis. It’s an alternative hypothesis to the null because if the null is not true, there must be an alternative explanation.

Generally speaking it’s not a prediction of what will happen in the study, but it’s an assumption about what is true for the population being studied. But, similar to the null hypothesis in the IB Psych IA you can (and should) write this about a prediction of what you think will happen in your study (see examples below).

This must be operationalized: it must be evident how the variables will be quantified, and may be either one- or two-tailed (directional or non-directional).

Read more: 


Examples

To avoid issues with copying and plagiarism, the following examples are from studies that students cannot do for the internal assessment. Some are taken from this post on how to operationalize definitions of variables.

A Fictional Drug Trial

Operationalized (as if for an IB Psych IA):

A Fictional Study on Body Image*

Operationalized (as if for an IB Psych IA):

*This entire IA exemplar is included in the IA Teacher Support Pack. 

A Fictional Study on Weight Training

Operationalized (as if for an IB Psych IA):


One vs. Two Tailed

It is important to know if your hypothesis is one or two-tailed. This will influence the type of inferential statistics test you use later. If you have a one-tailed hypotheses, you should use a one-tailed test. And if you have a two-tailed hypothesis? You guessed it – a two-tailed test.

The one vs two tailed debate still continues in Psychology (read more). The IB ignores this and makes it simple: one tailed hypotheses = one tailed test. No ifs, ands, or buts!

If you are predicting that one of your conditions in your experiment will have a higher value than the other, it’s one-tailed (because you know the direction of the effect – the IV is increasing the DV). Similarly, your hypothesis is one-tailed if you are predicting that manipulating the IV will cause a decrease in the DV.

However, if you think your IV will have an effect, but you’re not sure if it will increase or decrease it, this is two-tailed.

Of the three examples above, can you tell which one is two-tailed and which one is one-tailed?


Operational Definitions

Read more about operationally defining your variables in your hypotheses in this blog post.

Points to Remember

Footnote 1: Saying “that there will be no significant difference between the two conditions in or any differences are due to chance” is technically an incorrect way to state a null hypothesis. That’s because when we conduct our inferential tests we’re seeing what the probability is of getting our results even if our null were true. So if we get a p value of say 0.10 (10%), according to the above null hypothesis we’re saying there is a 10% chance that there will be no significant difference between the two conditions, which isn’t actually accurate (don’t worry if I’ve lost you – it’s mind bending stuff). This is one of those instances where poor statistical practice has ingrained itself in IB assessment. But on the plus side it does make it easier for students (and not enough time is spent on this for the bad habits to be too ingrained anyway).

Exit mobile version